Praxisrelevante Fortschritte bei nicht für eine Transplantation geeigneten PatientInnen

Heinz Gisslinger
Medizinische Universität Wien
Ziele der Myelomtherapie

Erzielen von Symptomfreiheit

Erzielen von Remission:
 Unterschied ob
 hohes oder niedriges Risiko

Verlängerung des PFS

Verlängerung des Gesamtüberlebens
Fortschritte in der Therapie der Behandlung von nicht für die Transplantation geeigneten Patienten mit multiplem Myelom

Immunmodulierende Substanzen:
- Revlimid (Erstlinientherapie)
- Pomalidomid

Proteasomeninhibitoren:
- Carfilzomib
- Ixozamib

HDAC-Inhibitoren
- Vorinostat (Entwicklung gestoppt)
- Panabinostat

Monoklonale Antikörper
- Daratumumab
- Elotuzumab
FIRST (MM-020): Impact of Cytogenetics Study Design

Stratification: age, country, and ISS stage

Data cutoff: March 3, 2014
FIRST (MM-020): Frailty Analysis
Frailty Algorithm

- Pts were categorized into 3 severity groups (fit, intermediate, or frail) as described by a proxy algorithm based on the IMWG frailty scale

<table>
<thead>
<tr>
<th>IMWG Frailty Scale</th>
<th>Proxy for MM-020 Analysis</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>Age</td>
<td></td>
</tr>
<tr>
<td>≤ 75 yrs</td>
<td>≤ 75 yrs</td>
<td>0</td>
</tr>
<tr>
<td>76-80 yrs</td>
<td>76-80 yrs</td>
<td>1</td>
</tr>
<tr>
<td>> 80 yrs</td>
<td>> 80 yrs</td>
<td>2</td>
</tr>
<tr>
<td>Activity of Daily Living score</td>
<td>EQ-5D: Self Care score</td>
<td></td>
</tr>
<tr>
<td>> 4</td>
<td>1 (no problem)</td>
<td>0</td>
</tr>
<tr>
<td>≤ 4</td>
<td>2-3 (moderate or severe problem)</td>
<td>1</td>
</tr>
<tr>
<td>Instrumental Activity of Daily Living score</td>
<td>EQ-5D: Usual Activities score</td>
<td></td>
</tr>
<tr>
<td>> 5</td>
<td>1 (no problem)</td>
<td>0</td>
</tr>
<tr>
<td>≤ 5</td>
<td>2-3 (moderate or severe problem)</td>
<td>1</td>
</tr>
<tr>
<td>Charlson Comorbidity Index score</td>
<td>Charlson Comorbidity Index score</td>
<td></td>
</tr>
<tr>
<td>≤ 1</td>
<td>≤ 1</td>
<td>0</td>
</tr>
<tr>
<td>≥ 2</td>
<td>≥ 2</td>
<td>1</td>
</tr>
</tbody>
</table>

Total
- 0: Fit
- 1: Intermediate
- ≥ 2: Frail

IMWG, International Myeloma Working Group; pt, patient.
Facon T. A Frailty Scale Predicts Outcomes in Patients With Newly Diagnosed Multiple Myeloma Who Are Ineligible for Transplant Treated With Continuous Lenalidomide Plus Low-Dose Dexamethasone in the FIRST Trial. ASH 2015, abstract 4239.
FIRST (MM-020): Frailty Analysis
Breakdown of Severity Group by Treatment Arm

cont, continuous; MPT, melphalan, prednisone, and thalidomide; Rd, lenalidomide and low-dose dexamethasone; Rd18, Rd for 18 cycles.
Facon T. A Frailty Scale Predicts Outcomes in Patients With Newly Diagnosed Multiple Myeloma Who Are Ineligible for Transplant Treated With Continuous Lenalidomide Plus Low-Dose Dexamethasone in the FIRST Trial. ASH 2015, abstract 4239.

Facon T et al, ASH 2015
FIRST (MM-020): Frailty Analysis
PFS by Severity Group (Data Cutoff: March 3, 2014)

Facon T. A Frailty Scale Predicts Outcomes in Patients With Newly Diagnosed Multiple Myeloma Who Are Ineligible for Transplant Treated With Continuous Lenalidomide Plus Low-Dose Dexamethasone in the FIRST Trial. ASH 2015, abstract 4239
FIRST (MM-020): Frailty Analysis
OS by Severity Group (Data Cutoff: March 3, 2014)

HR, hazard ratio; MPT, melphalan, prednisone, and thalidomide; NR, not reached; OS, overall survival; pt, patient; Rd, lenalidomide and low-dose dexamethasone; Tx, treatment.

Facon T. A Frailty Scale Predicts Outcomes in Patients With Newly Diagnosed Multiple Myeloma Who Are Ineligible for Transplant Treated With Continuous Lenalidomide Plus Low-Dose Dexamethasone in the FIRST Trial. ASH 2015, abstract 4239
Kontinuierliche Therapie mit Revlimid + Dexamethason (Fortecortin)
Unfitte vs. Fitte Patienten

Facon T et al, ASH 2015
FIRST (MM-020): Impact of Cytogenetics Response

Odds Ratio (95% CI)

<table>
<thead>
<tr>
<th></th>
<th>High Risk</th>
<th>Non-High Risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rd continuous vs MPT</td>
<td>1.55 (0.61-3.95)</td>
<td>1.75 (1.10-2.77)</td>
</tr>
<tr>
<td>Rd continuous vs Rd18</td>
<td>1.60 (0.64-4.00)</td>
<td>1.07 (0.66-1.74)</td>
</tr>
</tbody>
</table>

*a Numbers may not sum due to rounding.

CR, complete response; MPT, melphalan, prednisone, and thalidomide; ORR, overall response rate; PR, partial response; Rd, lenalidomide plus low-dose dexamethasone; Rd18, Rd for 18 cycles; VGPR, very good partial response.

FIRST (MM-020): Impact of Cytogenetics on Outcomes of Transplant-Ineligible Patients With Newly Diagnosed Multiple Myeloma Treated With Continuous Lenalidomide Plus Low-Dose Dexamethasone in the FIRST (MM-020) Trial. ASH 2015, abstract #730.
FIRST (MM-020): Impact of Cytogenetics Overall Survival

<table>
<thead>
<tr>
<th></th>
<th>n</th>
<th>3 Yr, %</th>
<th>HR (95% CI) (Rd cont vs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-High Risk</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rd cont</td>
<td>205</td>
<td>77</td>
<td>-</td>
</tr>
<tr>
<td>Rd18</td>
<td>209</td>
<td>71</td>
<td>0.85 (0.62-1.18)</td>
</tr>
<tr>
<td>MPT</td>
<td>206</td>
<td>65</td>
<td>0.66 (0.48-0.91)</td>
</tr>
<tr>
<td>High Risk</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rd cont</td>
<td>43</td>
<td>41</td>
<td>-</td>
</tr>
<tr>
<td>Rd18</td>
<td>52</td>
<td>40</td>
<td>0.90 (0.55-1.47)</td>
</tr>
<tr>
<td>MPT</td>
<td>47</td>
<td>47</td>
<td>0.95 (0.57-1.59)</td>
</tr>
</tbody>
</table>

Pts at risk:

<table>
<thead>
<tr>
<th></th>
<th>Rd cont</th>
<th>Rd18</th>
<th>MPT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-High Risk</td>
<td>205</td>
<td>209</td>
<td>206</td>
</tr>
<tr>
<td>Rd cont</td>
<td>43</td>
<td>48</td>
<td>47</td>
</tr>
</tbody>
</table>

cont, continuous; HR, hazard ratio; MPT, melphalan, prednisone, and thalidomide; pt, patient; Rd, lenalidomide plus low-dose dexamethasone; Rd18, Rd for 18 cycles.

FIRST (MM-020): Frailty Analysis
Authors’ Conclusions

• Das progressionsfreie- und Gesamtüberleben ist besser bei Patienten die mit Rev/Dex kontinuierlich behandelt werden im Vergleich zu jenen Patienten die in dieser Studie MPT bekommen haben.

• Die Bedeutung der IMWG Frailty Skala um das klinische Ansprechen vorauszusagen wurde durch diese Studie unterstrichen.

• Der Großteil der in die FIRST Studie eingebrachten Patienten bestand aus Patienten mit schlechterem Allgemeinzustand, sodass diese Studie eine für die klinische Praxis relevante Untersuchung darstellt.

• Patienten mit Niedrigrisiko – Zytogenetik profitieren durch diese Kombination mehr als Hochrisikopatienten.

• Die kontinuierliche Behandlung mit Rev/Dex kann daher als Standard zur Erstbehandlung älterer Patienten betrachtet werden.

Facon T et al, ASH 2015
First-line therapy of multiple myeloma

Lenalidomide combinations

SWOG S077 (Durie) Abstract 25 – ASH 2015
RVd vs Rd With Rd Maintenance: SWOG S0777
Study Design1,2

INDUCTION

RVd
LEN 25 mg PO d1–14
DEX 20 mg PO
D1, 2, 4, 5, 8, 9, 11, 12
BORT 1.3 mg/m² IV
D1, 4, 8, 11
8 × 21-day cycles
(n = 242)

Rd
LEN 25 mg PO d1–21
DEX 40 mg PO
D1, 8, 15, 22
6 × 28-day cycles
(n = 232)

Stratified by ISS stage and intent to SCT

ENDPOINTS
Primary: PFS
Secondary: ORR, OS, safety

MAINTENANCE

Rd
LEN 25 mg PO d1–21
DEX 40 mg PO
D1, 8, 15, 22
28-day cycles until PD, unacceptable toxicity, or withdrawal of consent

FOLLOW-UP

Follow-up for 6 years for OS

• All pts received aspirin 325 mg/day
• RVd pts received HSV prophylaxis per institutional standard

NDMM without intent for immediate SCT
(N = 474)

BORT, bortezomib; D, day; DEX, dexamethasone; HSV, herpes simplex virus; ISS, International Staging System; LEN, lenalidomide; NDMM, newly diagnosed multiple myeloma; ORR, overall response rate; OS, overall survival; PD, progressive disease; PFS, progression-free survival; PO, oral administration; pt, patient; Rd, lenalidomide and low-dose dexamethasone; RVd, bortezomib, lenalidomide, and low-dose dexamethasone; SCT, stem cell transplant.
Phase III Trial SWOG S0777: Results

ORR: RVD: 71% vs RD 64%

Durie:“…..dass in der SWOG0777 deutlich jüngere Patienten eingeschlossen waren als in der FIRST. „
Pt characteristics were similar between Tx arms, with two exceptions:

- Fewer women received RVd vs Rd (37% vs 47%; \(P = 0.033 \))
- Fewer pts ≥ 65 years received RVd vs Rd (38% vs 48%; \(P = 0.042 \))
RVd vs Rd With Rd Maintenance: SWOG S0777
Survival Analyses

<table>
<thead>
<tr>
<th></th>
<th>RVd (n = 242)</th>
<th>Rd (n = 232)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median PFS, mos (95% Cl)</td>
<td>43 (39-51)</td>
<td>31 (26-40)</td>
</tr>
<tr>
<td>HR (96% Wald Cl)</td>
<td>0.742 (0.579-0.951)</td>
<td></td>
</tr>
<tr>
<td>1-sided stratified log-rank P-value</td>
<td>.0066(^a)</td>
<td></td>
</tr>
<tr>
<td>Median OS, mos (95% Cl)</td>
<td>NR</td>
<td>63 (55-69)</td>
</tr>
<tr>
<td>HR</td>
<td></td>
<td>0.666</td>
</tr>
<tr>
<td>2-sided log-rank P-value</td>
<td>.0114</td>
<td></td>
</tr>
</tbody>
</table>

\(^a\) This analysis reached the prespecified significance level of .02.
HR, hazard ratio; Rd, lenalidomide and low-dose dexamethasone; NR, not reached; OS, overall survival; PFS, progression-free survival; Rd, lenalidomide and low-dose dexamethasone; RVd, bortezomib, lenalidomide, and low-dose dexamethasone.

RVd vs Rd With Rd Maintenance: SWOG S0777 Authors’ Conclusions

- The addition of BORT to Rd induction therapy provides a statistically significant and clinically meaningful improvement in PFS
 - OS is also extended with the addition of BORT to Rd
- The safety and tolerability of RVd is acceptable, although neurotoxicity is increased
- RVd represents a potential new standard of care for pts with NDMM

BORT, bortezomib; NDMM, newly diagnosed multiple myeloma; OS, overall survival; PFS, progression-free survival; pt, patient; Rd, lenalidomide and low-dose dexamethasone; RVd, bortezomib, lenalidomide, and low-dose dexamethasone.

Therapy of relapsed/refractory MM

Pomalidomide combinations
POM + LoDEX vs. HiDEX in Relapsed and Refractory MM
MM-010 (STRATUS): Trial Design

- Primary endpoint: Safety
- Key secondary endpoints: ORR (≥ PR by IMWG criteria), DOR, PFS, OS, and POM exposure
- Data cutoff: May 4, 2015

Thromboprophylaxis with low-dose aspirin, low-molecular-weight heparin, or equivalent was required for all pts

Registered at ClinicalTrials.gov as NCT01712789 and at EudraCT as 2012-001888-78.

AE, adverse event; DOR, duration of response; IMWG, International Myeloma Working Group; LoDEX, low-dose dexamethasone; MM, multiple myeloma; ORR, overall response rate; OS, overall survival; PD, progressive disease; PFS, progression-free survival; POM, pomalidomide; PR, partial response; pts, patients; SPM, second primary malignancy, Tx, treatment.

Moreau P, et al. Analysis of Patient Outcomes by Prior Treatment and Depth of Response in STRATUS (MM-010), a Phase 3b Study of Pomalidomide + Low-Dose Dexamethasone in Patients With Relapsed/Refractory Multiple Myeloma. ASH 2015, abstract #1834.
Moreau P, et al. Analysis of Patient Outcomes by Prior Treatment and Depth of Response in STRATUS (MM-010), a Phase 3b Study of Pomalidomide + Low-Dose Dexamethasone in Patients With Relapsed/Refractory Multiple Myeloma. ASH 2015, abstract #1834.
MM-010 (STRATUS): PFS and OS by Depth of Response

Error bars show 95% confidence interval.
OS, overall survival; PFS, progression-free survival.
Moreau P, et al. Analysis of Patient Outcomes by Prior Treatment and Depth of Response in STRATUS (MM-010), a Phase 3b Study of Pomalidomide + Low-Dose Dexamethasone in Patients With Relapsed/Refractory Multiple Myeloma. ASH 2015, abstract #1834.
POM + LoDEX: Pooled Renal Analysis
Efficacy

<table>
<thead>
<tr>
<th></th>
<th>With Moderate RI</th>
<th>Without Moderate RI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MM-002 (n = 37)</td>
<td>MM-003 (n = 93)</td>
</tr>
<tr>
<td>Median PFS (95% CI), mos</td>
<td>3.8 (2.8-7.9)</td>
<td>4.0 (2.8-4.8)</td>
</tr>
<tr>
<td>Median TTP (95% CI), mos</td>
<td>4.7 (3.1-9.3)</td>
<td>4.4 (2.9-6.5)</td>
</tr>
<tr>
<td>Median DOR (95% CI), mos</td>
<td>8.3 (5.8-14.1)</td>
<td>6.6 (3.9-9.7)</td>
</tr>
<tr>
<td>Median OS (95% CI), mos</td>
<td>13.4 (8.7-23.8)</td>
<td>10.4 (6.6-12.4)</td>
</tr>
</tbody>
</table>

- ORR was similar in pts with moderate RI vs without RI (30.4% vs 33.8%; P = .299)
- Median PFS (P = .070), median TTP (P = .302), and median DOR (P = .435) were similar for both pt subgroups
- Pts with moderate RI had a significantly shorter median OS vs pts without RI (P = .004)

DOR, duration of response; LoDEX, low-dose dexamethasone; ORR, overall response rate; OS, overall survival; PFS, progression-free survival; POM, pomalidomide; pt, patient; RI, renal impairment; TTP, time to progression.
Overview Triplet Combination Pomalidomide rrMM new
Efficacy Results of Pomalidomide-based Triplet Therapies in Advanced rrMM

- **Response (%)**
 - PR
 - VGPR
 - CR

Study / Author / Phase

<table>
<thead>
<tr>
<th>Study / Author / Phase</th>
<th>MM-003 / San-Miguel, 2013 / Phase III¹</th>
<th>Larocca, 2013 / Phase I/II²</th>
<th>Baz, 2014 / Phase II³</th>
<th>MM-005 / Richardson, 2015 / Phase I⁵</th>
<th>Shah, 2013 / Phase I/II⁶</th>
<th>Rosenbaum, 2014 / Phase I/II⁷</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>302</td>
<td>55⁴</td>
<td>34⁵</td>
<td>47</td>
<td>34</td>
<td>79</td>
</tr>
<tr>
<td></td>
<td>Median: 5</td>
<td>Median: 3</td>
<td>Median: 4</td>
<td>Median: 2</td>
<td>Median: 5</td>
<td>Median: 2</td>
</tr>
<tr>
<td>Inclusion criteria⁶</td>
<td>Previous LEN and BORT treatment</td>
<td>LEN-relapsed or/refractory</td>
<td>Resistant or refractory to LEN</td>
<td>LEN-refractory, prior PI</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PFS</td>
<td>Median 4.0 mos</td>
<td>Median 10.4 mos</td>
<td>Median 9.5 mos</td>
<td>Median 10.7 mos</td>
<td>NR</td>
<td>Median 9.7 mos</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Median 18.9 mos</td>
</tr>
</tbody>
</table>

¹ Data reported here for MTD and Phase II pts only; ² CR not reported; ³ among others

- BORT, bortezomib; CFZ, carfilzomib; CR, complete response; CYCLO, cyclophosphamide; DEX, dexamethasone; LEN, lenalidomide; ORR, overall response rate; POM, pomalidomide; PR, partial response; PRED, prednisone; VGPR, very good partial response; PFS, progression-free survival; NR, not reported.
Baz R, et al. Pomalidomide, Cyclophosphamide, and Dexamethasone Is Superior to Pomalidomide and Dexamethasone in Relapsed and Refractory Myeloma: Results of a Multicenter Randomized Phase II Study. ASH 2014, abstract #303
Cyclophosphamide; LoDEX, low-dose dexamethasone; PFS, progression free survival; POM, pomalidomide.

Baz R, et al. Pomalidomide, Cyclophosphamide, and Dexamethasone Is Superior to Pomalidomide and Dexamethasone in Relapsed and Refractory Myeloma: Results of a Multicenter Randomized Phase II Study. ASH 2014, abstract #303
Phase III studies in relapsed and refractory MM

<table>
<thead>
<tr>
<th>Regime</th>
<th>ASPIRE</th>
<th>PANORAMA</th>
<th>ELOQUENT</th>
<th>TOURMALINE-MM1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regime</td>
<td>KRd vs Rd 27 mg/m² CFZ K: max 18 cycles</td>
<td>PAN+Vd vs Vd+Plb 20 mg oral Max 12 cycles</td>
<td>Elo+Rd vs Rd 10 mg/kg Elo Until progression</td>
<td>Ixa+Rd vs Rd+Plb 4 mg Ixa Until progression</td>
</tr>
<tr>
<td>ISS III (%)</td>
<td>43</td>
<td>22</td>
<td>21</td>
<td>12</td>
</tr>
<tr>
<td>ORR (%)</td>
<td>87.1 vs 66.7</td>
<td>60.7 vs 54.6</td>
<td>79 vs 66</td>
<td>78.3 vs 71.5</td>
</tr>
<tr>
<td>≥VGPR (%)</td>
<td>69.9 vs 40.4</td>
<td>27.6 vs 15.7</td>
<td>28 vs 21</td>
<td>48.1 vs 39</td>
</tr>
<tr>
<td>CR+sCR (%)</td>
<td>31.8 vs 9.3</td>
<td>11 vs 6</td>
<td>4 vs 7</td>
<td>11.7 vs 6.6</td>
</tr>
<tr>
<td>PFS (prim. EP)</td>
<td>26.3 vs 17.6 mo</td>
<td>12 vs 8.1 mo</td>
<td>19.4 vs 14.9 mo</td>
<td>20.6 vs 14.7 mo</td>
</tr>
<tr>
<td>OS (mo or %)</td>
<td>At 24 mo: 73.3 vs 65%</td>
<td>33.6 vs 30.4 mo</td>
<td>43.7 vs 39.6 mo</td>
<td>Not yet mature</td>
</tr>
</tbody>
</table>
Fortschritte in der Therapie der Behandlung von nicht für die Transplantation geeigneten Patienten mit multiplem Myelom

Immunmodulierende Substanzen:
- Revlimid (Erstlinientherapie)
- Pomalidomid

Proteasomeninhbitorioren:
- Carfilzomib
- Ixozamib

HDAC-Inhibitoren
- Vorinostat (Entwicklung gestoppt)
- Panabinostat

Monoklonale Antikörper
- Daratumumab
- Elotuzumab
ASPIRE Trial: Study Design

28-day cycles

Randomize 1:1

N= 792

LEN: 25 mg PO
D1-21
DEX: 40 mg PO or IV
D1, 8, 15, 22

Cycles 1-12
(28 days each)

CFZ: 20\(^a/27\) mg/m\(^2\) IV
\(^a\) D1 and 2 (cycle 1)
D8, 9, 15, 16 (cycle 1) and
D1, 2, 8, 9, 15, 16 (cycles 2-12)
LEN: 25 mg PO
D1-21
DEX: 40 mg PO or IV
D1, 8, 15, 22

Cycles 13-18
(28 days each)

CFZ: 27 mg/m\(^2\) IV
D1, 2, 15, 16
LEN: 25 mg PO
D1-21
DEX: 40 mg PO or IV
D1, 8, 15, 22

Cycles ≥ 19
(28 days each)

LEN: 25 mg PO
D1-21
DEX: 40 mg PO or IV
D1, 8, 15, 22

Tx until PD or toxicity

ASPIRE: Carfilzomib, Lenalidomide, and Dexamethasone versus Lenalidomide and Dexamethasone for the treatment of Patients with Relapsed Multiple Myeloma; CFZ: carfilzomib; D: day; DEX: dexamethasone; IV: intravenous; LEN: lenalidomide; PD: progressive disease; PO: orally; Tx: treatment.

1. Moreau P. J Clin Oncol. 2011;29 [abstract TPS227, poster presentation].

Primärer Endpunkt: Progressions-freies Überleben

ITT Population (n=792)

<table>
<thead>
<tr>
<th></th>
<th>Carfilzomib Group (N=396)</th>
<th>Control Group (N=396)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disease progression or death — no. (%)</td>
<td>207 (52.3)</td>
<td>224 (56.6)</td>
</tr>
<tr>
<td>Median progression-free survival — mo</td>
<td>26.3</td>
<td>17.6</td>
</tr>
<tr>
<td>Hazard ratio for carfilzomib group vs. control group (95% CI)</td>
<td>0.69 (0.57–0.83)</td>
<td></td>
</tr>
</tbody>
</table>

P=0.0001

No. at Risk

<table>
<thead>
<tr>
<th></th>
<th>Carfilzomib group</th>
<th>Control group</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>396</td>
<td>396</td>
</tr>
<tr>
<td>6 months</td>
<td>332</td>
<td>287</td>
</tr>
<tr>
<td>12 months</td>
<td>279</td>
<td>206</td>
</tr>
<tr>
<td>18 months</td>
<td>222</td>
<td>151</td>
</tr>
<tr>
<td>24 months</td>
<td>179</td>
<td>117</td>
</tr>
<tr>
<td>30 months</td>
<td>112</td>
<td>72</td>
</tr>
<tr>
<td>36 months</td>
<td>24</td>
<td>18</td>
</tr>
<tr>
<td>42 months</td>
<td></td>
<td></td>
</tr>
<tr>
<td>48 months</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Sekundärer Endpunkt: Gesamtüberleben - Interims-Analyse
Medianer Follow-up 32 Monate

Medianes Gesamtüberleben wurde nicht erreicht; die Ergebnisse haben die vorher bestimmte Abbruchsgrenze (P=0.005) bei der Interims-Analyse nicht erreicht.
PFS by Prior Line of Therapy (1 vs ≥2)

<table>
<thead>
<tr>
<th>1 prior line of therapy</th>
<th>≥2 prior lines of therapy</th>
</tr>
</thead>
<tbody>
<tr>
<td>KRd (n=184)</td>
<td>Rd (n=157)</td>
</tr>
<tr>
<td>PFS, median months</td>
<td>29.6</td>
</tr>
<tr>
<td>Hazard ratio</td>
<td>0.69 (0.52–0.94)</td>
</tr>
<tr>
<td>P value (one-sided)</td>
<td>.008</td>
</tr>
</tbody>
</table>

CI: Confidence interval; KRd, carfilzomib, lenalidomide, and dexamethasone; PFS, progression-free survival; Rd, lenalidomide and dexamethasone.
Overall Survival by Prior Line of Therapy (1 vs ≥2)

1 prior line of therapy

≥2 prior lines of therapy

KRd, carfilzomib, lenalidomide, and dexamethasone; OS, overall survival; Rd, lenalidomide and dexamethasone.
Hematologic Grade ≥3 Adverse Events Reported in ≥3% of Patients in Any Subgroup

<table>
<thead>
<tr>
<th>Hematologic grade ≥3 AEs (preferred terms), n (%)</th>
<th>1 prior line of therapy</th>
<th>≥2 prior lines of therapy</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>KRd (n=182)</td>
<td>Rd (n=154)</td>
</tr>
<tr>
<td>Neutropenia</td>
<td>48 (26.4)</td>
<td>34 (22.1)</td>
</tr>
<tr>
<td>Anemia</td>
<td>31 (17.0)</td>
<td>30 (19.5)</td>
</tr>
<tr>
<td>Thrombocytopenia</td>
<td>28 (15.4)</td>
<td>18 (11.7)</td>
</tr>
<tr>
<td>Leukopenia</td>
<td>6 (3.3)</td>
<td>5 (3.2)</td>
</tr>
<tr>
<td>Lymphopenia</td>
<td>6 (3.3)</td>
<td>3 (1.9)</td>
</tr>
<tr>
<td>Decreased platelet count</td>
<td>6 (3.3)</td>
<td>3 (1.9)</td>
</tr>
<tr>
<td>Decreased neutrophil count</td>
<td>4 (2.2)</td>
<td>1 (0.6)</td>
</tr>
</tbody>
</table>

	KRd (n=210)	Rd (n=235)
Neutropenia	68 (32.4)	69 (29.4)
Anemia	39 (18.6)	37 (15.7)
Thrombocytopenia	37 (17.6)	30 (12.8)
Leukopenia	6 (2.9)	11 (4.7)
Lymphopenia	5 (2.4)	5 (2.1)
Decreased platelet count	6 (2.9)	6 (2.6)
Decreased neutrophil count	8 (3.8)	10 (4.3)

AE, adverse event; KRd, carfilzomib, lenalidomide, and dexamethasone; Rd, lenalidomide and dexamethasone.
Median PFS

*Descriptive P-value.
ENDEAVOR Study Design

Randomization 1:1
N=929
Stratification:
• Prior proteasome inhibitor therapy
• Prior lines of treatment
• ISS stage
• Route of V administration

Kd
Carfilzomib 56 mg/m² IV
Days 1, 2, 8, 9, 15, 16 (20 mg/m² days 1, 2, cycle 1 only)
Infusion duration: 30 minutes for all doses
Dexamethasone 20 mg
Days 1, 2, 8, 9, 15, 16, 22, 23
28-day cycles until PD or unacceptable toxicity

Vd
Bortezomib 1.3 mg/m² (IV bolus or subcutaneous injection)
Days 1, 4, 8, 11
Dexamethasone 20 mg
Days 1, 2, 4, 5, 8, 9, 11, 12
21-day cycles until PD or unacceptable toxicity

International Staging System; IV, intravenous; Kd, carfilzomib and dexamethasone; PD, progressive disease; Vd, bortezomib and dexamethasone; V, bortezomib.
Primary End Point: Progression-Free Survival

Intent-to-Treat Population (N=929)

- **Disease progression or death – n (%):**
 - Kd (n=464): 171 (37)
 - Vd (n=465): 243 (52)

- **Median PFS – months:**
 - Kd: 18.7
 - Vd: 9.4

- **HR for Kd vs Vd (95% CI):**
 - 0.53 (0.44–0.65)
 - 1-sided P < 0.0001

- **Median follow-up:** 11.2 months

CI, confidence interval; HR, hazard ratio; ITT, intent-to-treat; Kd, carfilzomib and dexamethasone; PFS, progression-free survival; Vd, bortezomib and dexamethasone.

Carfilzomib is not approved in EU.
Secondary End Point: Response Rates

- **Median DOR:** 21.3 months (95% CI, 21.3–NE) for Kd vs 10.4 months (95% CI, 9.3–13.8) for Vd

CI, confidence interval; CR, complete response; DOR, duration of response; ORR, overall response rate; Kd, carfilzomib and dexamethasone; NE, not estimable; PR, partial response; Vd, bortezomib and dexamethasone; VGPR, very good partial response.

Carfilzomib is not approved in EU.
Secondary End Point: Overall Survival

Intent-to-Treat Population (N=929)

OS data were immature; the study will continue until the final OS analysis is performed.

<table>
<thead>
<tr>
<th>Months Since Randomization</th>
<th>Kd (n=464)</th>
<th>Vd (n=465)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>75 (16)</td>
<td>88 (19)</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Death – n (%)

Median OS – months

HR for Kd vs. Vd (95% CI)

0.79 (0.58–1.08)

1-sided $P=0.066$

CI, confidence interval; HR, hazard ratio; ITT, intent to treat; Kd, carfilzomib and dexamethasone; NE, not estimable; OS, overall survival; Vd, bortezomib and dexamethasone.

Carfilzomib is not approved in EU.
Ixazomib in transplant-ineligible patients

Best confirmed response

<table>
<thead>
<tr>
<th>Confirmed response, * n (%)</th>
<th>ICd-300 (N=32)</th>
<th>ICd-400 (N=34)</th>
<th>All (N=66)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CR + VGPR</td>
<td>10 (28)</td>
<td>7 (21)</td>
<td>17 (26)</td>
</tr>
<tr>
<td>ORR (CR + VGPR + PR)</td>
<td>25 (78)</td>
<td>22 (65)</td>
<td>47 (71)</td>
</tr>
<tr>
<td>CR</td>
<td>3 (10)</td>
<td>3 (9)</td>
<td>6 (9)</td>
</tr>
<tr>
<td>sCR</td>
<td>1 (3)</td>
<td>0</td>
<td>1 (2)</td>
</tr>
<tr>
<td>PR</td>
<td>22 (69)</td>
<td>19 (56)</td>
<td>41 (62)</td>
</tr>
<tr>
<td>VGPR</td>
<td>7 (22)</td>
<td>4 (12)</td>
<td>11 (17)</td>
</tr>
<tr>
<td>SD</td>
<td>6 (16)</td>
<td>9 (26)</td>
<td>15 (23)</td>
</tr>
</tbody>
</table>

*response-evaluable patients

Dimopoulos, M et al. Presented at ASH 2015 (Abstract 26), oral presentation
Ixazomib in transplant ineligible patients
Accumulated response rate over time*

*first confirmed or unconfirmed response

Data cut-off 2 Sept 2015

Median time to
≥PR: 1.3 cycles

≥PR

≥VGPR

Median follow-up
Ixazomib in transplant ineligible patients
Progression-free survival

- Median follow-up of 9.2 months

Dimopoulos, M et al. Presented at ASH 2015 (Abstract 26), oral presentation
Fortschritte in der Therapie der Behandlung von nicht für die Transplantation geeigneten Patienten mit multiples Myelom

Immunmodulierende Substanzen:
- Revlimid (Erstlinientherapie)
- Pomalidomid

Proteasomeninhibitoren:
- Carfilzomib
- Ixozamib

HDAC-Inhibitoren
- Vorinostat (Entwicklung gestoppt)
- Panabinostat

Monoklonale Antikörper
- Daratumumab
- Elotuzumab
PANORAMA 1 Studiendesign

Ptn (N=768)
- Rel oder Rel/Ref MM (BTZ-ref exkludiert)
- 1-3 vorheriger Therapielinien
- Stratifizierungsfaktoren
 - Vorherige Therapielinien
 - Vorheriges BTZ

Behandlungsphase I
Acht 21-Tage Zyklen (24 Wochen)
- Panobinostat + Bortezomib + Dexamethasone
- Plazebo + Bortezomib + Dexamethasone

Behandlungsphase II
Vier 42-Tage Zyklen (24 Wochen)
- Panobinostat + Bortezomib + Dexamethasone
- Plazebo + Bortezomib + Dexamethasone

Ptn mit klinischem Benefit\(^a\) in Phase I können in Phase II übertreten

Follow-up

- Primärer Endpunkt: Progressions-freies Überleben
- Sekundärer Endpunkt: Gesamtüberleben
- Andere sekundäre Endpunkte: ORR, nCR/CR Rate,, DOR, TTR, TTP, QoL und Sicherheit

\(^a\) Erreichen von ≥ keine Veränderung nach den modifizierten EBMT Kriterien (SD oder besser)

Studie wurde in 215 Zentren in 34 Ländern durchgeführt
Primary Endpoint (PFS) – overall study population

Primary endpoint met ($P < .0001$), with clinically relevant increase in median PFS of 3.9 months for PAN-BTZ-Dex arm

- Updated IRC analysis demonstrated greater concordance with PFS by investigator per protocol assessment
- The data cutoff date for the final analysis of PFS was September 10, 2013

Richardson PG. 2014. ASCO. Oral present. 8510
Detailed Subgroup Analysis of PFS By Prior Treatment

Longer median PFS Linked With Longer “Treatment-free Interval”

<table>
<thead>
<tr>
<th>Time (months)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median duration of exposure</td>
<td></td>
</tr>
<tr>
<td>Median PFS</td>
<td></td>
</tr>
<tr>
<td>TFI ... Treatment-free interval</td>
<td></td>
</tr>
<tr>
<td>= PFS – med. exposure time</td>
<td></td>
</tr>
</tbody>
</table>

Overall study population (n=768)

<table>
<thead>
<tr>
<th></th>
<th>Placebo arm</th>
<th>PANO arm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment</td>
<td>Yellow</td>
<td>Yellow</td>
</tr>
<tr>
<td>TFI</td>
<td>Gray</td>
<td>Purple</td>
</tr>
<tr>
<td>(\Delta) PFS</td>
<td>3.9 mo</td>
<td></td>
</tr>
</tbody>
</table>

Treatment Free Interval = \(~7\) mo
Alternative Therapiemöglichkeiten für Zweit- und Mehrlinientherapien

Immunmodulierende Substanzen:
- Pomalidomid

Proteasomeninhibitoren:
- Carfilzomib
- Ixozamib

HDAC-Inhibitoren
- Vorinostat (Entwicklung gestoppt)
- Panabinostat

Monoklonale Antikörper
- Daratumumab
- Elotuzumab
- Monoklonaler Antikörper von Morphosys
Myeloma targets and antibodies in development

<table>
<thead>
<tr>
<th>Myeloma Target</th>
<th>mAb</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD30</td>
<td>Brentuximab vedotin</td>
</tr>
<tr>
<td>CD38</td>
<td>SAR650984, Daratumumab, MOR-202</td>
</tr>
<tr>
<td>CD40</td>
<td>Lucatumumab, Dacetuzumab</td>
</tr>
<tr>
<td>CD54 (ICAM-1)</td>
<td>BI-505</td>
</tr>
<tr>
<td>CD56</td>
<td>Lorvotuzumab</td>
</tr>
<tr>
<td>CD70</td>
<td>SGN-70</td>
</tr>
<tr>
<td>CD74</td>
<td>Miltatuzumab (-doxorubicin)</td>
</tr>
<tr>
<td>CD138</td>
<td>BT062</td>
</tr>
<tr>
<td>CD200</td>
<td>Samalizumab</td>
</tr>
<tr>
<td>BCMA</td>
<td>GSK2857916</td>
</tr>
<tr>
<td>CXCR4</td>
<td>Ulocuplumab</td>
</tr>
<tr>
<td>FcRL5</td>
<td>Anti-FcRL5(hu10A8)-SPDB-DM4</td>
</tr>
<tr>
<td>SLamF7</td>
<td>Elotuzumab</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Immune Targets</th>
<th>mAb</th>
</tr>
</thead>
<tbody>
<tr>
<td>KIR</td>
<td>IPH2101</td>
</tr>
<tr>
<td>CD47</td>
<td>CC-90002</td>
</tr>
<tr>
<td>CD137</td>
<td>BMS-663513</td>
</tr>
<tr>
<td>PD-1</td>
<td>Pembrolizumab, nivolumab, pidilizumab</td>
</tr>
<tr>
<td>PD-L1</td>
<td>BMS-936559, MPDL3280A</td>
</tr>
</tbody>
</table>

IMW 2015
Phase I/II Daratumumab Monotherapy Study: IMWG Response and PFS

IMWG Response

- All Patients: n = 32
- ≤ 2 mg/kg: n = 20
- ≥ 4 mg/kg: n = 12

Response Rate (%)

PFS

- 4-24 mg/kg (n = 12)
 - median follow up time: 18.4 wks (0-53)
- 0.005-2 mg/kg (n = 20)
 - median follow up time: 8.6 wks (0-29)

Log-rank test $P = .007$

Lenalidomide on Effector and Target Cells: Enhanced ADCC Via NK Cell Activation & CD38 Upregulation

NCI-H929
(CD38 high, lenalidomide cytotoxicity sensitive)
- Lenalidomide added to effector cells and MM cell line
- MOR202 added to effector cells and MM cell line

AMO-1
(CD38 low, lenalidomide cytotoxicity insensitive)

![Graphs showing specific killing activity vs. MOR202 concentration for NCI-H929 and AMO-1 cell lines.](image)

- LEN-induced effector cell activation
- LEN-induced CD38 upregulation
- LEN-induced cytotoxic effect on target cells
MOR 202: Clinical Benefit Rate (CBR)

<table>
<thead>
<tr>
<th>Response, n (%)</th>
<th>Cohort 1 ibr 420 mg* (n = 13)</th>
<th>Cohort 2 ibr 560 mg + dex (n = 18)</th>
<th>Cohort 3 ibr 840 mg* (n = 18)</th>
<th>Cohort 4 ibr 840 mg + dex (n = 43)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CBR (MR or better)</td>
<td>1 (8)</td>
<td>1 (6)</td>
<td>0 (0)</td>
<td>10 (23)</td>
</tr>
<tr>
<td>PR</td>
<td>0 (0)</td>
<td>1 (6)</td>
<td>0 (0)</td>
<td>2 (5)</td>
</tr>
<tr>
<td>MR</td>
<td>1 (8)</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>8 (19)</td>
</tr>
<tr>
<td>SD ≥ 4 cycles</td>
<td>1 (8)</td>
<td>4 (22)</td>
<td>6 (33)</td>
<td>12 (28)</td>
</tr>
</tbody>
</table>

International Myeloma Workshop, 2015
ELOQUENT-2 Study Design

- Open-label, international, randomized, multicenter, phase 3 trial (168 global sites)

Key inclusion criteria
- RRMM
- 1–3 prior lines of therapy
- Prior Len exposure permitted in 10% of study population (patients not refractory to Len)

Elo plus Len/Dex (E-Ld) schedule (n=321)
- Elo (10 mg/kg IV): Cycle 1 and 2: weekly; Cycles 3+: every other week
- Len (25 mg PO): Days 1–21
- Dex: weekly equivalent, 40 mg

Len/Dex (Ld) schedule (n=325)
- Len (25 mg PO): Days 1–21;
- Dex: 40 mg PO Days 1, 8, 15, 22

Assessment
- Tumor response: every 4 weeks until progressive disease
- Survival: every 12 weeks after disease progression

Endpoints:
- Co-primary: PFS and ORR
- Other: overall survival (data not yet mature), duration of response, quality of life, safety

- All patients received premedication to mitigate infusion reactions prior to elotuzumab administration
- Elotuzumab IV infusion administered ~ 2–3 hours

Lonial et al, NEJM 2015
Co-primary Endpoint: Progression-Free Survival

E-Ld–treated patients had a 30% reduction in the risk of disease progression or death; treatment difference at 1 and 2 years was 11% and 14%, respectively.

PFS analysis used the primary definition of PFS

Lonial et al, NEJM 2015
Co-primary Endpoint: Overall Response Rate

*Defined as partial response or better. †Complete response rates in the E-Ld group may be underestimated due to interference from therapeutic antibody in immunofixation and serum protein electrophoresis assay.

Lonial et al, NEJM 2015
Danke für die Aufmerksamkeit